KILLING VECTOR FIELDS OF CONSTANT LENGTH ON RIEMANNIAN NORMAL HOMOGENEOUS SPACES
نویسندگان
چکیده
منابع مشابه
Spaces of Conformal Vector Fields on Pseudo-riemannian Manifolds
We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.
متن کاملConcurrent vector fields on Finsler spaces
In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...
متن کاملHarmonic-killing Vector Fields *
In this paper we consider the harmonicity of the 1-parameter group of local infinitesimal transformations associated to a vector field on a (pseudo-) Riemannian manifold to study this class of vector fields, which we call harmonic-Killing vector fields.
متن کاملOn the existence of Killing vector fields
In covariant metric theories of coupled gravity-matter systems the necessary and sufficient conditions ensuring the existence of a Killing vector field are investigated. It is shown that the symmetries of initial data sets are preserved by the evolution of hyperbolic systems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transformation Groups
سال: 2016
ISSN: 1083-4362,1531-586X
DOI: 10.1007/s00031-016-9380-y